Experimental and Theoretical Studies of the Copper(I) and Silver(I) Dinuclear N, N^{\prime}-Di-p-tolylformamidinato Complexes

F. A. Cotton,* Xuejun Feng, Marek Matusz, and Rinaldo Poli

Contribution from the Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, Texas 77843. Received March 2, 1988

Abstract

This work addresses the question raised by many compounds in which short metal-metal distances might be taken to imply the existence of $\mathrm{M}-\mathrm{M}$ bonds, but first-order, qualitative bonding theory is ambiguous, the answer depending on the degree of participation of outer (s, p) valence orbitals. The two compounds M_{2} (form) ${ }_{2}$, where $\mathrm{M}=\mathrm{Cu}$ or Ag^{l} and form represents $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCHNC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}$, have been prepared and characterized by X-ray crystallography and visible spectroscopy. Their electronic structures in the ground state have been investigated by SCF-X $\alpha-\mathrm{SW}$ molecular orbital calculations. Although the metal-metal distances are short $(\mathrm{Cu}-\mathrm{Cu}=2.497$ (2) and $\mathrm{Ag}-\mathrm{Ag}=2.705$ (1) \AA), we conclude that there is little or no direct metal-metal bonding in these molecules. Valence shell s and p orbitals of the metals play a prominent role in metal-ligand bonding but do not provide a basis for metal-metal bonding. Crystallographic data are as follows: $\mathrm{Cu}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}(1)$, space group Pccn, $a=13.187(2) \AA, b=29.073(5) \AA, c=7.140(2) \AA, V=2737$ (1) \AA^{3}. $\mathrm{Ag}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}$ (2), space group Pnaa, $a=7.0397$ (8) $\AA, b=13.689(2) \AA, c=29.039(3) \AA, V=2799(1) \AA^{3}$.

Metal-metal bonds of orders 1 to 4 are well established in hundreds of transition-metal compounds. ${ }^{1}$ They are generally formulated in terms of d - d overlaps giving rise to σ, π, and δ bonding and antibonding orbitals, and so long as there are fewer electrons occupying the antibonding orbitals than there are in the bonding orbitals, no ambiguity arises as to the bond order. For M_{2} units formed by elements toward the right side of the d block, the occupation of antibonding orbitals eventually becomes complete, as in compounds such as $\mathrm{Pd}_{2}(\mathrm{RNCHNR})_{4}$ and $\mathrm{Ni}_{2^{-}}$ $(\mathrm{RNCHNR})_{4}$; in these and related cases, the usual formal, qualitative treatment of the $\mathrm{M}-\mathrm{M}$ bonding would result in assigning a bond order of zero. However, the $\mathrm{M}-\mathrm{M}$ distances in such compounds are usually short enough to raise the question of whether direct $\mathrm{M}-\mathrm{M}$ bonding might not exist because the participation of s and/or p orbitals (e.g., $5 s$ and $5 p$ for Pd) could provide a surplus of occupied $\mathrm{M}-\mathrm{M}$ bonding molecular orbitals. In a recent study ${ }^{2 a}$ of such compounds, we reached the conclusion that this is not the case, although there is some participation of outer s and p orbitals in metal-ligand bonds.

In the work reported here, we have extended this type of enquiry to the case of some $\mathrm{Cu}^{1}-\mathrm{Cu}^{1}$ and $\mathrm{Ag}^{1}-\mathrm{Ag}^{1}$ compounds, where the question of metal-metal bonding appears in a form that is similar in principle, though different in detail, to that outlined above. The question we are dealing with here concerns compounds of type I, where the bridging ligands ABA^{-}are each forming one electron

I
pair donor bond (formally speaking) to each metal ion, and the metal ions are d^{10} ions such as Cu^{+}and Ag^{+}. Since there is no possibility of $d-d$ metal-metal bonding, and yet (as will be seen) the $\mathrm{M}-\mathrm{M}$ distances are rather short, we are inquiring whether $\mathrm{M}-\mathrm{M}$ bonds are formed by use of metal s or p orbitals.

Experimental Section

The compounds Cu_{2} (form) $)_{2}, 1$, and Ag_{2} (form) $)_{2}, 2$, where form represents the anion of (p-tol) $\mathrm{NCHNH}(p-\mathrm{tol})$, were prepared according to

[^0]a literature procedure. ${ }^{3} \quad \mathrm{Cu}_{2}$ (form) ${ }_{2}$ was recrystallized from toluene to give pale yellow crystals. Ag_{2} (form) ${ }_{2}$ was purified by dissolving it in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtering through a short Celite column to obtain a clear solution. To this solution hexane was added. Evaporation afforded pure Ag_{2} (form) ${ }_{2}$ as a colorless crystalline solid.

X-ray quality crystals of 1 were grown by vapor diffusion of ether into a dichloromethane solution of it. The acicular crystals were as much as a few millimeters long but very thin. A small piece of one of the long needles was broken and used for X-ray crystallography. Crystals of $\mathbf{2}$ were grown by slow evaporation, in the dark, of a dichloromethane-ether solution of Ag_{2} (form) ${ }_{2}$. They were platelike in nature.

Infrared spectra were recorded as Nujol mulls between KBr plates on a Perkin-Elmer 783 spectrometer. $\mathrm{Cu}_{2}(\text { form })_{2}: 1610 \mathrm{w}, 1580 \mathrm{~s}, 1550$ s, $1510 \mathrm{~s}, 1470 \mathrm{~s}, 1380 \mathrm{~m}, 1345 \mathrm{~s}, 1310 \mathrm{w}, 1230 \mathrm{~s}, 1180 \mathrm{w}, 1118 \mathrm{w}, 980$ $\mathrm{m}, 938 \mathrm{w}, 825 \mathrm{~s}, 775 \mathrm{w}, 723 \mathrm{~m}, 640 \mathrm{w}, 532 \mathrm{~s}, 475 \mathrm{w}, 405 \mathrm{w} . \mathrm{Ag}_{2}$ (form) $)_{2}$: $1610 \mathrm{w}, 1580 \mathrm{~s}, 1550 \mathrm{~s}, 1510 \mathrm{~s}, 1460 \mathrm{~m}, 1360 \mathrm{~s}, 1310 \mathrm{w}, 1238 \mathrm{~s}, 1185$ $\mathrm{m}, 1125 \mathrm{w}, 1045 \mathrm{w}, 980 \mathrm{~m}, 940 \mathrm{w}, 830 \mathrm{~s}, 770 \mathrm{w}, 722 \mathrm{~m}, 660 \mathrm{w}, 635 \mathrm{~m}$, $545 \mathrm{w}, 530 \mathrm{~m}, 509 \mathrm{w}$.

UV-vis spectra were recorded on $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions (HPLC grade, Aldrich) with a Cary 17D spectrometer ($800-240 \mathrm{~nm}$). Cu_{2} (form) $)_{2}: \lambda$ $=380 \mathrm{~nm}(\mathrm{sh}), \lambda=324 \mathrm{~nm}\left(\epsilon=34300 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), \lambda=258 \mathrm{~nm}(\epsilon=$ $37720 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$). Ag_{2} (form) $)_{2}: \lambda=325 \mathrm{~nm}(\mathrm{sh}), \lambda=307 \mathrm{~nm}(\epsilon=$ $35800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$), $\lambda=245$ (sh).

X-ray Crystallography. Single crystals were glued on top of glass fibers. Preliminary investigation revealed the crystals to be orthorhombic. The Laue class and the axial dimensions were confirmed with oscillation photographs. From the systematic absences, the space group was uniquely determined to be Pccn (no. 56) for $\mathrm{Cu}_{2}(\text { form })_{2}$. For Ag_{2} (form) ${ }_{2}$, a nonstandard setting of Pccn (Pnaa) was used. Data processing was routine to our laboratory. Lorentz, polarization, and absorption corrections ${ }^{4}$ were applied. The structure of Ag_{2} (form) ${ }_{2}$ was partially solved by the direct methods of the SHELX-86 package. ${ }^{5}$ Remaining non-hydrogen atoms were found by alternating least-squares cycles and difference Fourier maps. All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added to phenyl rings at calculated distances, assigned a common thermal parameter, and included in the refinement. Methyl groups were refined as rigid bodies, with hydrogen atoms having an assigned common thermal parameter also included in the refinement. The hydrogen atom on the bridging carbon atom was treated like the phenyl hydrogen atom.

The refinement of the $\mathrm{Cu}_{2}(\text { form })_{2}$ structure was initiated with the metal atom position taken from the above structure. The refinement proceeded routinely. Because of the smaller number of data available, only $\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(2)$, and $\mathrm{C}(1)$ were refined a nisotropically. The phenyl rings and methyl group were treated isotropically. Hydrogen atoms were added at calculated distances to the phenyl rings and to the methyl group, which were refined as rigid bodies. Two thermal parameters were as-

[^1]Table I. Crystallographic Data for Cu_{2} (form) $)_{2}, \mathbf{1}$, and Ag_{2} (form) $)_{2}, 2$

[^2]signed to hydrogen atoms (one for phenyl hydrogens, one for methyl hydrogens) and included in the refinement. The hydrogen on the bridging carbon atom was treated as an aromatic hydrogen. Both structures were refined with SHELX-76. ${ }^{6}$ Relevant crystallographic and procedural data are presented in Table I.

Computational Procedures. A model system, $\mathbf{M}_{2}(\mathbf{H N C H N H})_{2}$, was used for each calculation instead of the real \mathbf{M}_{2} (form) $)_{2}$ molecule. For both model molecules the calculations were carried out by the SCF$\mathrm{X} \alpha-\mathrm{SW}$ method. ${ }^{7}$ The atomic coordinates used in the calculations were derived from the averaged bond distances and bond angles based on the crystal structure data of the real compounds. However, the metal-metal distances used were exactly those in the real compounds, and the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bond distances were chosen as 1.06 and $1.08 \AA$, respectively. For both molecules a strict $D_{2 h}$ symmetry was assumed, and all atoms in the molecules were put in the $X Z$ plane with the two metal atoms lying on the Z axis.

The initial molecular potentials for the SCF procedure were constructed from $\mathrm{Cu}(+1.0)$ or $\mathrm{Ag}(+1.0), \mathrm{N}(-0.4)$, and $\mathrm{C}(-0.2)$ HermanSkillman atomic potentials and H is radical functions. The α values used for each atom were taken from the compilation of Schwarz. ${ }^{8}$ The partial wave basis consisted of s -, p -, and d-type spherical harmonics on the Cu and Ag atoms, s and p on the N and C atoms, and s only on the H atoms. For the outer sphere $l=4$ was used. The SCF calculations for both molecules were considered to be converged when the shift in the molecular potential was less than 0.001 Ryd.

Under the $D_{2 h}$ symmetry of the molecule both $\mathrm{d}_{z^{2}}$ and $\mathrm{d}_{x^{2}-y^{2}}$ orbitals as well as the s orbitals of the metals span the a_{g} and $b_{1 u}$ representations.

[^3]

Figure 1. ORTEP plot of Ag_{2} (form) $)_{2}$ at 50% probability level. Hydrogen atoms have been omitted for clarity.

Figure 2. Packing diagram for Cu_{2} (form) $)_{2}$, view down the C crystallographic axis.

To make clear the roles of the individual d orbitals in bonding, LCAO representations of the converged numerical $\mathrm{X} \alpha-\mathrm{SW}$ molecular orbitals were generated for all such orbitals by projecting onto a Slater-type atomic orbital basis set. ${ }^{9}$ The basis set includes a double- ζ function for the d orbital and single- ζ functions for the s and p orbitals of the metal.

Results

The \mathbf{M}_{2} (form) ${ }_{2}$ compounds are easily prepared and stable in air. They form isotypic crystals, but since the structures were determined by different persons, the lattices were indexed differently, causing one of them to be handled in space group Pccn and the other in a nonstandard setting of the same space group, viz., Pnaa. The two compounds are strictly isotypic, and the intermolecular contacts and packing in the two cases are qualitatively the same. No unusual nonbonded contacts occur. The two sets of coordinates are related by the trivial relationship [x, $y, z]_{\mathrm{Ag}}=[z, x+1 / 2, y+1 / 2]_{\mathrm{Cu}}$. The positional parameters and isotropic equivalent thermal displacement parameters for $\mathbf{1}$ and $\mathbf{2}$ are listed in Table II. In each case a crystallographic 2 -fold axis passes through the midpoint of the molecule. The entire central group, $\mathrm{M}_{2}(\mathrm{NCN})_{2}$, is essentially planar, and the planes of the tolyl groups are only slightly tilted out of this plane. These features are all clearly displayed in Figure 1, which shows the Ag_{2} (form) ${ }_{2}$ molecule. The Cu_{2} (form) $)_{2}$ molecule is very similar, differing mainly in the considerably shorter metal-metal distance. The atom numbering follows the same pattern in both cases. Tables III and IV provide the principal bond lengths and bond angles for $\mathbf{1}$ and $\mathbf{2}$, respectively. The crystal packing in these

[^4]Table II. Positional Parameters and Their Estimated Standard Deviations for Cu_{2} (form) ${ }_{2}$ and for Ag_{2} (form) ${ }_{2}$

atom	x	y	x	$B\left(\AA^{2}\right)$
		$\mathrm{Cu}_{2}(\text { form })_{2}$		
Cu	0.2144	0.2101	0.1276	3
$\mathrm{~N}(1)$	0.0856	0.2384	0.1320	2
$\mathrm{~N}(2)$	0.3465	0.1877	0.1296	3
$\mathrm{C}(1)$	0.0736	0.2820	0.1320	2
$\mathrm{C}(10)$	-0.0026	0.2093	0.1250	2^{a}
$\mathrm{C}(11)$	0.0021	0.1662	0.2073	2^{a}
$\mathrm{C}(12)$	-0.0813	0.1378	0.2085	3^{a}
$\mathrm{C}(13)$	-0.1713	0.1506	0.1272	3^{a}
$\mathrm{C}(14)$	-0.1746	0.1929	0.0376	3^{a}
$\mathrm{C}(15)$	-0.0928	0.2226	0.0353	3^{a}
$\mathrm{C}(16)$	-0.2632	0.1188	0.1297	4^{a}
$\mathrm{C}(20)$	0.3679	0.1397	0.1488	2^{a}
$\mathrm{C}(21)$	0.4495	0.1227	0.2480	3^{a}
$\mathrm{C}(22)$	0.4629	0.0752	0.2675	4^{a}
$\mathrm{C}(23)$	0.3965	0.0453	0.1834	4^{a}
$\mathrm{C}(24)$	0.3165	0.0618	0.0847	4^{a}
$\mathrm{C}(25)$	0.3034	0.1097	0.0667	3^{a}
$\mathrm{C}(26)$	0.4109	-0.0063	0.2087	6^{a}
Ag	$0.1143(1)$	$0.71271(4)$	$0.70687(2)$	$4.69(2)$
N 1	$0.1201(8)$	$0.5756(4)$	$0.7404(2)$	$3.6(1)$
N 2	$0.1209(8)$	$0.6407(4)$	$0.8136(2)$	$3.8(1)$
C 1	$0.125(1)$	$0.5674(5)$	$0.7846(2)$	$3.3(1)$
C 10	$0.117(1)$	$0.4915(5)$	$0.7118(2)$	$3.4(1)$
C 11	$0.201(1)$	$0.4962(5)$	$0.6687(2)$	$3.5(1)$
C 12	$0.203(1)$	$0.4164(5)$	$0.6401(2)$	$3.8(2)$
C 13	$0.122(1)$	$0.3270(5)$	$0.6532(2)$	$3.9(2)$
C 14	$0.035(1)$	$0.3255(5)$	$0.6963(2)$	$4.0(2)$
C 15	$0.031(1)$	$0.4037(5)$	$0.7251(2)$	$3.7(2)$
C 16	$0.129(1)$	$0.2385(6)$	$0.6222(3)$	$5.6(2)$
C 20	$0.1424(9)$	$0.8770(5)$	$0.6375(2)$	$3.3(1)$
C 21	$0.058(1)$	$0.8134(6)$	$0.6070(3)$	$4.9(2)$
C 22	$0.081(1)$	$0.8274(7)$	$0.5604(3)$	$5.9(2)$
C 23	$0.185(1)$	$0.9027(7)$	$0.5424(3)$	$5.8(2)$
C 24	$0.265(1)$	$0.9656(6)$	$0.5735(3)$	$5.6(2)$
C 25	$0.247(1)$	$0.9552(5)$	$0.6204(2)$	$4.2(2)$
C 26	$0.210(2)$	$0.9122(9)$	$0.4903(3)$	$8.8(3)$

${ }^{a}$ Atoms were refined isotropically. Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as $\left(^{4} / 3\right)\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+a b(\cos \gamma) \beta_{12}+a c(\cos \beta) \beta_{13}+\right.$ $\left.b c(\cos \alpha) \beta_{23}\right]$.

Table III. Selected Bond Distances in \AA and Bond Angles in deg for Cu_{2} (form) ${ }_{2}{ }^{a}$

$\begin{gathered} \text { atom } \\ 1 \end{gathered}$	atom2		distance	$\begin{gathered} \text { atom } \\ 1 \end{gathered}$	atom 2		distance
Cu	Cu	2.497 (2)		N(1)	C(10)		1.438 (11)
Cu	N(1)) 1.886 (7)		N(2)	C(1)		1.368 (11)
Cu	N(2)	1.859 (7)		N(2)	C(20)		1.426 (11)
N(1)	C(1)	1.276 (11)					
atom	atom	atom		atom	atom	atom	
1	2	3	angle	1	2	3	angle
Cu	Cu	N(1)	86.2 (2)	C(1)	N(1)	C(10)) 118.9 (8)
Cu	Cu	N(2)	88.5 (2)	Cu	N(2)	$\mathrm{C}(1)$	119.6 (6)
N(1)	Cu	N(2)	174.5 (3)	Cu	N(2)	$C(20)$) 121.9 (6)
Cu	N(1)	C(1)	122.8 (6)	C(1)	N(2)	$C(20)$) 118.3 (7)
Cu	N(1)	$\mathrm{C}(10)$	118.2 (5)	N(1)	$\mathrm{C}(1)$	$\mathrm{N}(2)$	122.9 (8)

${ }^{a}$ Numbers in parentheses are estimated standard deviations in the least significant digits.
compounds deserves some comment. It is qualitatively the same in both cases, since the compounds are isotypic. Figure 2 shows a stereoview of the unit cell of the copper compound. There are infinite sheets of molecules in planes perpendicular to the crystallographic c axis. Alternatively, one may describe the packing as consisting of stacks of molecules parallel to the c axis. There is no indication of any unusual intermolecular interactions. Within the sheets, the contacts are normal van der Waals contacts between tolyl groups, while the sheets are separated by $3.570 \AA$ in the Cu case and $3.520 \AA$ in the Ag case, these being precisely $c / 2$ and $a / 2$, respectively. The criss-cross pattern of M_{2} units in the stacks

Table IV. Selected Bond Distances (\AA) and Angles (deg) for Ag_{2} (form) ${ }_{2}{ }^{a}$

atom	atom		atom			atom	
1	2	distance	1	2	distance		
Ag	Ag^{\prime}	$2.705(1)$	N 1	C 10	$1.420(8)$		
Ag	N 1	$2.116(5)$	N 2	C 1	$1.310(8)$		
Ag	N 2	$2.094(5)$	N 2	C 20	$1.448(8)$		
N 1	C 1	$1.289(7)$					
atom	atom	atom		atom	atom	atom	
1	2	3	angle	1	2	3	
Ag^{\prime}	Ag	N 1	$84.7(1)$	Cl	N 1	C 10	
Ag^{\prime}	Ag	N 2	$84.4(2)$	Ag	N 2	C 1	
N 1	Ag	N 2	$168.9(2)$	Ag	N 2	C 20	
Ag	N 1	C 1	$122.5(4)$	$116.2(4)$			
Ag	N 1	C 10	$116.6(4)$	Cl	N 2	C 20	

${ }^{a}$ Numbers in parentheses are estimated standard deviations in the least significant digits.
seems clearly to be caused by the packing of the slightly tilted tolyl groups; the angles between the projected M-M axes of adjacent layers is almost exactly 45°. The shortest intermolecular (i.e., interlayer) $\mathrm{M}-\mathrm{M}$ contacts are as follows: $\mathrm{Cu}-\mathrm{Cu}, 3.687$, $4.250 \AA$ and $\mathrm{Ag}-\mathrm{Ag}, 3.665,4.320 \AA$.

In both compounds the metal-metal distances are unusually (though not uniquely, vide infra) short. We shall make comparisons with other compounds later. It may be noted here, however, that the $\mathrm{Ag} \cdots \mathrm{Ag}$ distance, though longer in an absolute sense then the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance (by $0.208 \AA$) is shorter in proportion to the sizes of the atoms. Pauling gives R_{1} radii for Cu and Ag of 1.176 and $1.342 \AA$, respectively, which means that $\mathrm{Ag} \cdots \mathrm{Ag}$ and $\mathrm{Cu} \cdots \mathrm{Cu}$ distances might have been expected to differ by $0.33 \AA$ purely on the basis of the inherent atomic size difference. Indeed, for the silver compound, the actual $\mathrm{Ag} \cdots \mathrm{Ag}$ separation, $2.71 \AA$ is but slightly greater than twice the single bond radius (viz., $2.68 \AA$) for that metal.
Because of these short interatomic distances, the question naturally arises whether there is metal-metal bonding. Since Cu^{1} and Ag^{1} are d^{10} systems, this could only be the case if significant $\mathrm{s}-\mathrm{s}$ and or $\mathrm{p}_{\mathrm{z}}-\mathrm{p}_{\mathrm{z}}$ overlap comes into play. Molecular orbital calculations were carried out for both compounds to see what light they might throw on this point.

Bonding in $\mathrm{Cu}_{2}(\mathbf{H N C H N H})_{2}$. The results of the molecular orbital calculation are summarized in Table V. In addition to the MOs described in Table V, there are ten more at lower energy, all of which are completely ligand-based and hence of no direct interest here. A search for the lowest lying virtual orbitals was made, employing the converged molecular potential, up to an energy of -0.5 eV . Four such orbitals were found, viz., $3 \mathrm{~b}_{2 \mathrm{u}}, 7 \mathrm{a}_{g}$, $6 \mathrm{~b}_{1 u}$, and $8 \mathrm{a}_{\mathrm{g}}$, all of which are diffuse with most of their amplitude located in the intersphere and outersphere regions. The LUMO is the $3 \mathrm{~b}_{2 \mathrm{u}}$ orbital, and it lies 2.64 eV above the HOMO, $2 \mathrm{a}_{\mathrm{u}}$.

Before turning to detailed discussion of the results in Table V, it will be helpful to employ simple group-theoretical analysis to determine the representations to which molecular orbitals of different functional types must belong. We shall use the subscripts i and o to designate orbitals whose amplitude is (at least mainly, but in some cases rigorously) in the molecular plane (i) or out of it (o). The results of this analysis are presented in Table VI.

A single, well-defined bonding or antibonding function for each of the 18 MOs listed in Table V is fairly easy to assign for $\mathrm{Cu}_{2}(\mathrm{HNNNH})_{2}$. Let us first deal with $\mathrm{Cu}-\mathrm{N}$ bonding. For the σ bonds it is the $3 \mathrm{~b}_{1 \mathrm{u}}, 4 \mathrm{a}_{\mathrm{g}}, 3 \mathrm{~b}_{2 \mathrm{~g}}$, and $4 \mathrm{~b}_{3 \mathrm{u}}$ orbitals that clearly have this as their main role. Contour diagrams for these four orbitals are presented in Figure 3. The $\mathrm{Cu}-\mathrm{N} \sigma$ bonding is fairly polar, with the electron density being, on average, twice as concentrated on the N atoms as on the Cu atoms. It is of particular importance to note that for the $3 \mathrm{~b}_{2 g}$ and $4 \mathrm{~b}_{3 \mathrm{u}}$ orbitals the metal contributions consist of 95% and 85%, respectively, metal $4 p_{x}$ orbitals. The other two $\mathrm{Cu}-\mathrm{L} \sigma$ orbitals have smaller but still significant ($20-30 \%$) contributions from the 4 s orbital.

Metal-ligand π bonding is not strong. All four of the orbitals that can most reasonably be assigned that role have low or fairly

Table V. Upper Valence Molecular Orbitals for $\mathrm{Cu}_{2}(\mathrm{HNCHNH})_{2}$

$D_{2 h}$ level	energy, eV	\% contribution					Cu angular contribution			
		2 Cu	4N	2 C	4H	2H				
$2 \mathrm{a}_{\mathrm{u}}$	-4.7013	38	62	0	0	0			$100 \% \mathrm{~d}_{x y}$	
$5 \mathrm{~b}_{1 \mathrm{u}}$	-5.3121	93	6	0	1	0	17\%s	3\%p	$33 \% \mathrm{~d}_{x^{2}-y^{2}}$	$47 \% \mathrm{~d}^{2}$
$2 \mathrm{~b}_{3 \mathrm{~g}}$	-5.6983	6	94	0	0	0				
$2 \mathrm{~b}_{1 \mathrm{~g}}$	-6.3158	87	5	8	0	0			$100 \% \mathrm{~d}_{x y}$	
$4 \mathrm{~b}_{2 \mathrm{~g}}$	-6.3579	98	1	0	1	0			$100 \% \mathrm{~d}_{x z}$	
$6 \mathrm{ag}_{\mathrm{g}}$	-6.4788	98	2	0	0	0	22\%s		$76 \% \mathrm{~d}_{x^{2}-y^{2}}$	$2 \% \mathrm{~d}_{z^{2}}$
$1 b_{3 g}$	-6.4904	99	1	0	0	0			$100 \% \mathrm{~d}_{\mathrm{yz}}$	
$4 \mathrm{~b}_{1 \mathrm{u}}$	-6.5260	100	0	0	0	0	1\%s		$49 \% \mathrm{~d}_{x^{2}-y^{2}}$	$50 \% \mathrm{~d}_{z^{2}}$
$5 b_{3 u}$	-6.7145	97	2	0	1	0			$100 \% \mathrm{~d}_{x z}$	
$2 \mathrm{~b}_{2 \mathrm{u}}$	-6.9431	99	1	0	0	0			$100 \% \mathrm{~d}_{y z}$	
5 ag	-7.2891	100	0	0	0	0	11\%s	1\%p	$88 \% \mathrm{~d}_{z^{2}}$	
$1 \mathrm{a}_{\mathrm{u}}$	-7.3726	77	23	0	0	0			$100 \% \mathrm{~d}_{x y}$	
$4 \mathrm{~b}_{3 \mathrm{u}}$	-8.4762	20	55	9	6	10		85\%p	$15 \% \mathrm{~d}_{x z}$	
$1 \mathrm{~b}_{2 \mathrm{u}}$	-8.8044	3	64	33	0	0				
$1 \mathrm{~b}_{1 \mathrm{~g}}$	-9.0894	21	54	25	0	0			$100 \% \mathrm{~d}_{x y}$	
$3 \mathrm{~b}_{2 \mathrm{~g}}$	-9.5429	18	69	2	11	0		95\%p	$5 \% \mathrm{~d}_{x z}$	
$4 \mathrm{ag}_{8}$	-10.1914	34	37	10	6	13	32\%s		55\%d ${ }^{2}-y^{2}$	$12 \% \mathrm{~d}_{z^{2}}$
$3 b_{1 u}$	-10.2272	33	52	0	15	0	20\%s		$59 \% \mathrm{~d}_{x^{2}-y^{2}}$	21\% d^{2}

Table VI. Symmetry Classification of Molecular Orbitals in $\mathbf{M}_{\mathbf{2}}(\mathrm{HNNNH})_{2}$ Molecules of $D_{2 h}$ Symmetry ${ }^{a}$

$\mathrm{M}-\mathrm{M}$ Bonding and Antibonding			
σ (MM)	α_{g}	σ^{*} (MM)	$\mathrm{b}_{1 \mathrm{u}}$
$\pi_{0}(\mathrm{MM})$	$\mathrm{b}_{2 \mathrm{u}}$	$\pi_{0}{ }^{*}(\mathrm{MM})$	$b_{3 g}$
$\pi_{\text {i }}(\mathrm{MM})$	$\mathrm{b}_{3 \mathrm{u}}$	$\pi_{\mathrm{i}}{ }^{*}(\mathrm{MM})$	$b_{2 g}$
$\delta(\mathrm{MM})$	$\mathrm{b}_{1 \mathrm{~g}}$	δ^{*} (MM)	a_{u}
$\mathrm{M}-\mathrm{N}$ Bonding Orbitals			
$\sigma(\mathrm{MN})$		$a_{g}, b_{2 g}, b_{14}, b_{34}$	

plane.
low metal contributions, viz., $1 b_{1 g}(21 \%), 1 b_{2 u}(3 \%), 2 b_{3 g}(6 \%)$, and $2 \mathrm{a}_{\mu}(38 \%)$.

Turning now to the various components of $\mathrm{Cu}-\mathrm{Cu}$ interaction, we can begin with the π and π^{*} MOs. There are two types of each: the inplane ($\pi_{\mathrm{i}}, \pi_{\mathrm{i}}{ }^{*}$) and the out-of-plane ($\pi_{0}, \pi_{0}{ }^{*}$). Assignment of the MOs in Table V to these roles is not difficult. We have for π_{0} and π_{i} the almost equienergic $2 b_{2 u}$ and $5 b_{3 u}$ orbitals, which consist almost totally (99% and 97%, respectively) of the appropriate d orbitals, namely, $\mathrm{d}_{y z}$ and $\mathrm{d}_{x z}$, respectively. Their antibonding counterparts are $1 \mathrm{~b}_{3 \mathrm{~g}}\left(\pi_{0}{ }^{*}, 99 \% \mathrm{~d}_{y z}\right)$ and $4 \mathrm{~b}_{2 \mathrm{~g}}$ ($\pi_{\mathrm{i}}^{*}, 98 \% \mathrm{~d}_{x z}$). There is clearly no net π bonding. These four MOs are physically equivalent to having $\mathrm{d}_{x z}{ }^{2} \mathrm{~d}_{y z}{ }^{2}$ configurations on each of the metal atoms.

The $\mathrm{Cu}-\mathrm{Cu} \delta$ interactions are also easily identifiable. The $2 \mathrm{~b}_{1 \mathrm{~g}}$ orbital which has $87 \% \mathrm{~d}_{x y}$ character is the δ orbital and the la a_{u} orbital ($77 \% \mathrm{~d}_{x y}$ character) is the δ^{*} orbital. Actually the $1 \mathrm{a}_{u}$ and $2 \mathrm{a}_{\mathrm{u}}$ orbitals interact and mix δ^{*} and $\mathrm{Cu}-\mathrm{N} \pi$ character to some extent, and it is for this reason that the $\delta^{*}\left(1 a_{u}\right)$ orbital lies below (by ca. 1 eV) the $\delta\left(2 \mathrm{~b}_{1 \mathrm{~g}}\right)$ orbital. However, it is clear that no net δ bonding occurs; even a slight imbalance of δ and δ^{*} effects would be of little importance since the δ overlap is inherently very small.

We have now accounted for most aspects of the copper-ligand and $\mathrm{Cu}-\mathrm{Cu}$ bonding (showing that the former is essentially polar σ bonding benefitting from $4 \mathrm{p}_{x}$ and 4 s orbital participation) and that the latter is nonexistent as far as π and δ components are concerned. It now remains only to consider $\mathrm{Cu}-\mathrm{Cu} \sigma$ and σ^{*} interactions. These are provided by the $5 \mathrm{a}_{\mathrm{g}}$ and $6 \mathrm{a}_{\mathrm{g}} \sigma$ orbitals and the $4 \mathrm{~b}_{1 u}$ and $5 \mathrm{~b}_{1 u} \sigma^{*}$ orbitals.

The $5 \mathrm{a}_{\mathrm{g}}$ orbital is formed mainly by a $\mathrm{d}_{z^{2}}-\mathrm{d}_{z^{2}}$ overlap, modified slightly by a small admixture of 4 s orbital; it is shown in Figure 4. It provides a good $\mathrm{Cu}-\mathrm{Cu} \sigma$ bonding interaction. The $6 \mathrm{a}_{\mathrm{g}}$ orbital arises mainly by $\mathrm{d}_{x^{2}-y^{2}}=\mathrm{d}_{x^{2}-y^{2}}$ overlap supplemented by some $\mathrm{s}-\mathrm{s}$ overlap. The former provides very little bonding since it is effectively a δ type interaction. This orbital is shown from two points of view in Figure 4. It is clear that it is practically nonbonding in the $\mathrm{Cu}-\mathrm{Cu}$ sense. Both the $4 \mathrm{~b}_{1 u}$ and $5 \mathrm{~b}_{1 u}$ orbitals are

CUZ(HNCHNH)2 *** 3BIU OREITAL

CUZ(HNCHNH)2 *** 3B2G ORBITAL

CU2(HNCHNH)2 *** AAC ORBITAL

CUZ(HNCHNH)2 *** 4BSU ORBITAL

Figure 3. Contour diagrams of the four molecular orbitals mainly concerned with $\mathrm{Cu}-\mathrm{N} \sigma$ bonding in $\mathrm{Cu}_{2}(\mathrm{HNCHNH})_{2}: 3 \mathrm{~b}_{1 \mathrm{u}}, 4 \mathrm{a}_{\mathrm{g}}, 3 \mathrm{~b}_{2 \mathrm{~g}}$, and $4 b_{3 u}$.
$\mathrm{Cu}-\mathrm{Cu} \sigma$ antibonding. Each of these can best be regarded as involving the overlap of $\mathrm{d}_{z^{2}}=-\mathrm{d}_{x^{2}-y^{2}}$ hybrids so that $4 \mathrm{~b}_{1 u}$ consists of a $\mathrm{d}_{z^{2}-y^{2}}-d_{z^{2}-y^{2}}$ combination, while the $5 \mathrm{~b}_{1 u}$ is formed from a
 bution. These two orbitals are shown as contour diagrams in Figure 5. It is clear that the net amount of $\mathrm{Cu}-\mathrm{Cu} \sigma$ bonding appears to be about zero.

In summary, for $\mathrm{Cu}_{2}(\mathrm{HNCHNH})_{2}$ our $\mathrm{X} \alpha$ calculation leads to the conclusion that the $4 \mathrm{p}_{x}$ orbitals contribute to $\mathrm{Cu}-\mathrm{N} \sigma$ bonding and the 4 s orbitals make small contributions to both σ and $\sigma^{*} \mathrm{Cu}-\mathrm{Cu}$ interactions. The other potential contributors to $\mathrm{Cu}-\mathrm{Cu}$ bonding, namely p_{z} (to σ) and p_{y} (to π) have no significant involvement. Thus, the net result of bringing two $\mathrm{d}^{10} \mathrm{Cu}^{\mathrm{I}}$ atoms together is shown to be no net Cu -Cu bond formation.

Bonding in $\mathrm{Ag}_{2}(\mathbf{H N C H N H})_{2}$. While the overall picture here is grossly similar to that for the copper compound, there are many differences in detail. Again, we can employ the classification in Table VI to structure our discussion of the results summarized in Table VII.

We shall again begin by examining the metal-ligand bonding. There is less 5 s and 5 p participation than in the Cu case. The

Table VII. Upper Valence Molecular Orbitals for $\mathrm{Ag}_{2}(\mathrm{HNCHNH})_{2}$

$D_{2 h}$ level	energy, eV	\% contribution						Ag angular contribution		
		2 Ag	4N	2 C	4H	2H				
$2 \mathrm{a}_{\mathrm{u}}$	-5.3748	11	89	0	0	0			$100 \% \mathrm{~d}_{x y}$	
$2 \mathrm{~b}_{3 \mathrm{~g}}$	-5.8128	2	98	0	0	0				
$5 \mathrm{~b}_{1 \mathrm{u}}$	-6.6484	72	24	1	0	3	25\%s	2\%p	$36 \% \mathrm{~d}_{x^{2}-y^{2}}$	$37 \% \mathrm{~d}_{z^{2}}$
$6 \mathrm{a}_{\mathrm{g}}$	-7.6937	71	20	3	2	4	54\%s	1\%p	$44 \% \mathrm{~d}_{x^{2}-y^{2}}$	$1 \% \mathrm{~d}^{2}$
$5 b_{3 u}$	-7.8116	23	55	6	7	9		57\%p	$43 \% \mathrm{~d}_{x z}$	
$2 \mathrm{~b}_{18}$	-8.3299	44	34	22	0	0			$100 \% \mathrm{~d}_{x y}$	
$4 \mathrm{~b}_{2 \mathrm{~g}}$	-8.6279	61	32	0	7	0		11\%p	$89 \% \mathrm{~d}_{x z}$	
$2 \mathrm{~b}_{2 \mathrm{u}}$	-9.0329	8	61	31	0	0				
$4 \mathrm{~b}_{1 \mathrm{u}}$	-9.1059	100	0	0	0	0			$36 \% \mathrm{~d}_{x^{2}-y^{2}}$	$64 \% \mathrm{~d}_{z^{2}}$
$1 b_{38}$	-9.1434	100	0	0	0	0			$100 \% \mathrm{~d}_{y z}$	
$3 \mathrm{~b}_{28}$	-9.5585	56	39	2	3	0		10\%p	$90 \% \mathrm{~d}_{x z}$	
$1 \mathrm{a}_{\mathrm{u}}$	-9.6293	95	5	0	0	0			$100 \% \mathrm{~d}_{x y}$	
$4 \mathrm{~b}_{3 \mathrm{u}}$	-9.7900	90	5	3	0	2			$100 \% \mathrm{~d}_{x z}$	
$1 \mathrm{~b}_{2 \mathrm{u}}$	-9.8426	96	3	1	0	0			$100 \% \mathrm{~d}_{y z}$	
$5 \mathrm{a}_{8}$	-10.0625	96	2	1	0	1	4\%s		26\% $\mathrm{d}_{x^{2}-y^{2}}$	$70 \% \mathrm{~d}^{2}$
$1 \mathrm{~b}_{1 \mathrm{~g}}$	-10.1535	71	21	8	0	0			$100 \% \mathrm{~d}_{x y}$	
$4 \mathrm{a}_{\mathrm{g}}$	-10.8235	63	18	6	4	9	1\%s		$56 \% \mathrm{~d}_{x^{2}-y^{2}}$	43\% $\mathrm{d}_{\mathrm{z}^{2}}$
$3 \mathrm{~b}_{14}$	-11.5379	48	39	0	13	0	4\%s		$75 \% \mathrm{~d}_{x^{2}-y^{2}}$	$21 \% \mathrm{~d}_{z^{2}}$

CUZ(HNCHNH)2 *** GAG OREITAL

CUZ(HNCHNH)2 *** 6AG OREITAL

Flgure 4. Contour diagrams of the principal $\mathrm{Cu}-\mathrm{Cu} \sigma$ orbitals, $5 \mathrm{a}_{\mathrm{g}}$ and $6 \mathrm{a}_{\mathrm{g}}$ (the latter shown projected both in the molecular plane and perpendicular to the molecular plane).
$3 \mathrm{~b}_{1 u}$ orbital is a major player in $\mathrm{Ag}-\mathrm{N} \sigma$ bonding and is fairly similar to the $3 \mathrm{~b}_{1 \mathrm{lu}}$ orbital in the Cu case, but it has a nearly negligible 5 s contribution. The $4 \mathrm{a}_{\mathrm{g}}$ orbital is again not only involved in $\mathrm{M}-\mathrm{N} \sigma$ bonding but also contributes to $\mathrm{Ag}-\mathrm{Ag}$ bonding to a far greater extent than was the case with the Cu compound. The $\mathrm{b}_{2 g}$ contribution to $\mathrm{Ag}-\mathrm{N} \sigma$ bonding is shared between the $3 b_{2 g}$ and $4 b_{2 g}$ orbitals, instead of being confined mainly to $3 b_{2 g}$

Flgure 5. Contour diagrams of the principal $\mathrm{Cu}-\mathrm{Cu} \sigma^{*}$ orbitals, $4 \mathrm{~b}_{1 \mathrm{u}}$ and $5 b_{1 u}$.
orbital as in the Cu case; also the 5 p contribution is much smaller. Finally, it is the $5 b_{3 u}$ orbital which makes the $b_{3 u}$ contribution to $\mathrm{Ag}-\mathrm{N}$ bonding, whereas in the Cu case it was the $4 \mathrm{~b}_{34}$ orbital. The $5 \mathrm{~b}_{3 \mathrm{u}}$ orbital of $\mathrm{Ag}_{2}(\mathrm{HNCHNH})_{2}$ has the largest 5 p contribution (57%) of any MO, but it is still smaller than that (85%) of the $4 \mathrm{~b}_{3 \mathrm{u}} \mathrm{Cu}-\mathrm{N} \sigma$ orbital. Figure 6 shows contour diagrams for the $3 \mathrm{~b}_{1 \mathrm{u}}, 4 \mathrm{a}_{\mathrm{g}}$, and $5 \mathrm{~b}_{3 \mathrm{u}} \mathrm{MOs}$ of $\mathrm{Ag}_{2}(\mathrm{HNCHNH})_{2}$.

Silver-nitrogen π bonding resembles $\mathrm{Cu}-\mathrm{N} \pi$ bonding in being weak. There are some differences, however. For the Ag case it is the $2 \mathrm{~b}_{1 \mathrm{~g}}, 2 \mathrm{~b}_{2 \mathrm{u}}, 2 \mathrm{a}_{\mathrm{u}}$, and $2 \mathrm{~b}_{3 \mathrm{~g}}$ orbitals that can be primarily assigned to this, in contrast to $1 b_{1 g}, 1 b_{2 u}, 2 a_{u}$, and $2 b_{3 g}$ in the Cu case. Again, the metal contributions are all small (percentages, respectively, of $44,8,11$, and 2) with but one exception.

Next we look at the $\mathrm{Ag}-\mathrm{Ag} \pi$ and π^{*} orbitals. Here the situation again closely resembles that in the Cu compound, although some of the orbitals have different relative energies. We have two nearly degenerate π orbitals, $1 \mathrm{~b}_{2 \mathrm{u}}\left(96 \% \mathrm{~d}_{y z}\right)$ and $4 \mathrm{~b}_{3 \mathrm{u}}$ ($90 \% \mathrm{~d}_{x z}$); which provide π_{o} and π_{i} bonding, respectively. We then have a corresponding filled orbital, $1 \mathrm{~b}_{3 \mathrm{~g}}\left(\pi^{*}{ }_{0}, 100 \% \mathrm{~d}_{y z}\right)$, but the $\pi_{\mathrm{i}}{ }^{*}$ antibonding function is split between the $3 \mathrm{~b}_{2 \mathrm{~g}}$ and $4 \mathrm{~b}_{2 \mathrm{~g}}$ orbitals (which also split their contributions to the role of $\mathrm{Ag}-\mathrm{N} \sigma$

Figure 6. Contour diagrams of three of the orbitals that are the main contributors to $\mathrm{Ag}-\mathrm{N} \sigma$ bonding in $\mathrm{Ag}_{2}(\mathrm{HNCHNH})_{2}: 3 \mathrm{~b}_{14}, 4 \mathrm{a}_{\mathrm{g}}$, and $5 b_{3 u}$.
bonding). However, despite the differences in detail, the final conclusion is still the same as in the Cu case, namely, that there is no net π bonding.

Turning now to the $\mathrm{Ag}-\mathrm{Ag} \delta$ interactions, we find a situation slightly different from that in the Cu compound but just as unambiguously indicative of no net δ bonding. In this case the pertinent orbitals are the $1 \mathrm{~b}_{1 \mathrm{~g}}\left(70 \% \mathrm{~d}_{x y}\right)$ and $1 \mathrm{a}_{u}\left(95 \% \mathrm{~d}_{x y}\right)$. Here we have the δ and δ^{*} orbitals in the conventional order but again off-setting each other.

Once again, we have dealt with the metal-ligand bonds (σ and π) and shown that metal-metal interactions of the π and δ types are essentially nonbonding. It remains, therefore, only to deal with those MOs that will be involved in $\mathrm{Ag}-\mathrm{Ag} \sigma$ and σ^{*} interactions. Some of the pertinent orbitals that we shall now discuss are shown in Figure 7. As already mentioned, the $4 \mathrm{a}_{\mathrm{g}}$ orbital makes a small contribution to $\mathrm{Ag}-\mathrm{Ag} \sigma$ bonding, but the $5 \mathrm{a}_{8}$ orbital, consisting almost entirely of metal d_{z} orbitals, is a major source of $\mathrm{Ag}-\mathrm{Ag} \sigma$ bonding. The $6 \mathrm{a}_{\mathrm{g}}$ orbital also makes a major contribution and is about one-half metal 5 s in parentage. Thus, there is a substantial amount of $\mathrm{Ag}-\mathrm{Ag} \sigma$ bonding. However, offsetting this are three σ^{*} orbitals of $\mathrm{b}_{1 u}$ symmetry. The $3 \mathrm{~b}_{1 u}$ orbital (already noted as a major factor in $\mathrm{Ag}-\mathrm{N} \sigma$ bonding) has a modest $\mathrm{Ag}-\mathrm{Ag} \sigma^{*}$ role, tending to oppose the modest bonding effect of the $4 \mathrm{a}_{\mathrm{g}}$ orbital. The $4 \mathrm{~b}_{1 \mathrm{u}}$ orbital is strongly $\mathrm{Ag}-\mathrm{Ag} \sigma^{*}$ in character and should effectively cancel the bonding effect of the $5 \mathrm{a}_{\mathrm{g}}$ orbital. Finally, the $5 \mathrm{~b}_{1 \mathrm{l}}$ orbital, which consists of a mix of $\mathrm{d}_{z^{2}}$ and $\mathrm{d}_{x^{2}-y^{2}}$ parentage as well as appreciable 5 s (25\%) character, should approximately counteract the bonding effect of the $6 \mathrm{a}_{\mathrm{g}}$ orbital. Thus, as in the Cu case, we again conclude

Flgure 7. Contour diagrams of the four orbitals principally concerned with $\mathrm{Ag}-\mathrm{Ag} \sigma$ and σ^{*} interactions: $5 \mathrm{a}_{\mathbf{g}}, 6 \mathrm{a}_{\mathbf{g}}$ (two views), $4 \mathrm{~b}_{1 \mathrm{l}}$, and $5 \mathrm{~b}_{\mathrm{lu}}$.
that no important amount of net $\mathrm{Ag}-\mathrm{Ag}$ bonding emerges.

Discussion

The $\mathbf{M}_{\mathbf{2}}$ (form) $)_{2}$ and $\mathbf{M}_{\mathbf{2}}$ (HNCHNH) $)_{2}$ Compounds. The crystal structures show discrete, noninteracting M_{2} (form) ${ }_{2}$ molecules, which are nearly planar and which we therefore believe are faithfully modeled by the rigorously planar ($D_{2 h}$) $\mathbf{M}_{2}(\mathrm{HNCHNH})_{2}$ species. The results of the MO calculations on both of the model compounds have been presented and discussed in detail. One point of comparison between the MO results for the model compounds and the properties of the real molecules concerns the UV-vis spectra. The observed bands have been listed in the Experimental Section, and the spectrum of the copper compound is shown in Figure 8. The spectrum of Hform itself shows absorptions at 320 and 285 nm , and both of the complexes display peaks at or near these wavelengths. Since the MO calculations showed in each case a large HOMO-LUMO gap, $2.5-3 \mathrm{eV}$, it is not inconsistent that no absorption bands are seen below 3.2 eV for Cu_{2} (form) $)_{2}$ and 4.0 eV for Ag_{2} (form) ${ }_{2}$.

Comparison of the $\mathbf{C u}-\mathrm{Cu}$ Distance in $\mathrm{Cu}_{\mathbf{2}}$ (form) $)_{2}$ with Others. The metal-metal contact in the Cu_{2} (form) ${ }_{2}$ compound is among the shortest known, although there is at least one which is shorter. The literature is quite large, and rather than make any attempt to cover it completely we shall deal only with a few compounds that seem especially pertinent.

Perhaps the closest analogue to Cu_{2} (form $)_{2}$ is $\mathrm{Cu}_{2}(\mathrm{PhNNNPh})_{2}$, which also has, effectively, $D_{2 h}$ symmetry. Its crystal structure was determined many years ago ${ }^{10}$ and is relatively inaccurate by present standards. The $\mathrm{Cu}-\mathrm{Cu}$ distance is reported as 2.45 ± 0.02

[^5]

Figure 8. The electronic absorption spectrum of Cu_{2} (form) ${ }_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.
\AA. Treating $0.02 \AA$ as an esd, this value is less than 3σ from the one, 2.497 (2) \AA, that we find in Cu_{2} (form) 2 . Very likely, however, it truly is at least a little bit shorter. It is interesting that the copper(I) 1,3-dimethyltriazinato compound, where steric hindrance is much less, is a tetramer, $[\mathrm{Cu}(\mathrm{MeNNNMe})]_{4}$, with $\mathrm{Cu}-\mathrm{Cu}$ separations in the range of $2.64-2.68 \AA$ for adjacent pairs. ${ }^{11}$

The structures of several copper(I) carboxylates, which are easily synthesized ${ }^{12}$ have been determined. Copper(I) benzoate forms tetramers in which the closest $\mathrm{Cu}-\mathrm{Cu}$ contacts are 2.719 (4) $\AA .{ }^{13}$ Crystalline copper(I) acetate forms dimers similar to Cu_{2} (form) ${ }_{2}$, but these link up by oxygen-atom bridging to give infinite chains in which the closest $\mathrm{Cu}-\mathrm{Cu}$ distances are 2.544 (4) $\AA .{ }^{14}$ However, according to an electron diffraction study of gaseous copper(I) acetate, ${ }^{15}$ where separated $\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$

[^6]molecules persist, the $\mathrm{Cu}-\mathrm{Cu}$ distance drops to 2.491 (3) \AA, which is not significantly different from what we have found in $\mathrm{Cu}_{2}-$ (form) ${ }_{2}$.
The compound $\mathrm{Cu}_{2}\left[0-\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}_{2}\right.\right.$ contains essentially planar $\mathrm{M}_{2}(\mathrm{NCC})_{2}$ head-to-tail units ${ }^{16}$ in which the $\mathrm{Cu}-\mathrm{Cu}$ distance is 2.412 (1) \AA. This is unambiguously shorter than that in Cu_{2} (form) $)_{2}$. However, we would venture the guess that there is still no clearly defined $\mathrm{Cu}-\mathrm{Cu}$ bonding, because of the general similarity of the molecule to Cu_{2} (form) ${ }_{2}$.

Comparison of the $\mathbf{A g}-\mathbf{A g}$ Distance in $\mathbf{A g}_{2}$ (form) $\mathbf{2}_{2}$ with Others. In this case, there appear to be two compounds previously described that have slightly shorter $\mathrm{Ag}-\mathrm{Ag}$ distances than that in Ag_{2} (form) ${ }_{2}$. These are the silver analogue of the copper compound just mentioned, $\mathrm{Ag}_{2}\left[0-\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}\right]_{2}$, in which an $\mathrm{Ag}-\mathrm{Ag}$ distance of 2.654 (1) \AA is found. ${ }^{16}$ and $\mathrm{Ag}_{2}(\mathrm{PhNNNPh})_{2}$ where the $\mathrm{Ag}-\mathrm{Ag}$ distance is 2.669 (1) $\AA .{ }^{17}$ The few silver(I) carboxylate dimers whose structures have been done all appear to have considerably longer $\mathrm{Ag}-\mathrm{Ag}$ distances. There are $\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.$ $\left.\mathrm{CCF}_{3}\right)_{2}{ }^{18}$ and $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}\right)_{2}{ }^{19}$ with silver-silver separations of 2.967 (3) and 2.90 (2) \AA; the latter structure was fairly crude, and the $\mathrm{Ag}-\mathrm{Ag}$ distance is the only one reported with an esd. Silver benzoate, $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}$, and silver p-hydroxybenzoate, $\mathrm{Ag}_{2}\left(p-\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, were prepared and structurally characterized. ${ }^{20}$ The metal-metal distances are again long, 2.902 (3) and 2.915 (8) \AA, respectively.

A final point of interest is that in the $\mathrm{M}_{2}\left[0-\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}_{2}\right.$ compounds ${ }^{16}$ the gold compound is also known and has a very short (2.672 (1) \AA) Au-Au distance. In fact, it was stated that stability in this group of compounds increases in the order $\mathrm{Cu}>\mathrm{Au}>\mathrm{Ag}$. In the case of M_{2} (form) ${ }_{2}$ compounds, we have been unable to isolate a gold compound, and thus the stability series must be Cu $\approx \mathrm{Ag} \gg \mathrm{Au}$. We do not know the reason for this difference.

Acknowledgment. We thank the National Science Foundation for financial support.

Supplementary Material Available: Full tables of bond distances, bond angles, and anisotropic displacement parameters for $\mathrm{Cu}_{2}{ }^{-}$ (form) $)_{2}$ and Ag_{2} (form) ${ }_{2}$ (4 pages); tables of calculated and observed structure factors (13 pages). Ordering information is given on any current masthead page.
(15) Iijima, K.; Itoh, T.; Shibata, S. J. Chem. Soc., Dalton Trans. 1985, 2555.
(16) Papasergio, R. I.; Raston, C. L.; White, A. H. J. Chem. Soc., Dalton Trans. 1987, 3085.
(17) Beck, J.; Strahle, J. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1986, $41 B, 4$.
(18) Griffin, R. G.; Ellett, J. D., Jr.; Mehring, M.; Bullitt, J. G.; Waugh, J. S. J. Chem. Phys. 1972, 57, 2147.
(19) Blakeslee, A. E.; Hoard, J. L. J. Am. Chem. Soc. 1956, 78, 3029.
(20) Usubaliev, B. T.; Movsumov, E. M.; Amiraslanov, I. R.; Akhmedov, A. I.; Musaev, A. A.; Mamedov, K. H. S. Zh. Strukt. Khim. 1981, 22, 98.

[^0]: (1) Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms; John Wiley and Sons: New York, 1982.
 (2) (a) Cotton, F. A.; Matusz, M.; Poli, R.; Feng, X. J. Am. Chem. Soc. 1988, 110,1144 . (b) A previous study of $\mathrm{Cu}^{1}-\mathrm{Cu}^{1}$ interactions in different compounds, using the extended Hückel method, concluded that mixing of metal s and p orbitals lead to "a slight attraction". Cf. Mehrotra, P. K.: Hoffman, R. Inorg. Chem. 1978, 17, 2187.

[^1]: (3) Bradley, W.; Wright, I. J. Chem. Soc. 1956, 640.
 (4) North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1968, A24, 351.
 (5) Sheldrick, G. M. shelxs-86; Institut für Anorganische Chemie der Universitat: Göttingen, F.R.G., 1986.

[^2]: ${ }^{a} R=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \sum\right| F_{\mathrm{o}}\right| \cdot{ }^{b} R_{w}=\left[\sum w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \sum w \mid F_{\mathrm{o}}{ }^{2}\right]^{1 / 2} ; w$ $=1 / \sigma^{2}\left(\left|F_{\mathrm{o}}\right|\right) . \quad{ }^{c}$ Quality-of-fit $=\left[\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\text {obsd }}-\right.\right.$ $\left.\left.N_{\text {perameters }}\right)\right]^{1 / 2}$. ${ }^{d}$ Second largest peak was $0.944 \mathrm{e} / \AA^{3}$.

[^3]: (6) Sheldrick, G. M. shelx-76; University of Cambridge: Cambridge, England 1976.
 (7) (a) Slater, J. C. Quantum Theory of Molecules and Solids; McGraw-Hill: New York, 1974; Vol. IV. (b) Johnson, K. H. Adv. Quantum Chem. 1973, 7, 143.
 (8) Schwartz, K. Phys. Rev. B 1972, 5, 2466; Theor. Chim. Acta 1974, 34, 225.

[^4]: (9) Bursten, B. E.; Fenske, R. F. J. Chem. Phys. 1977, 67, 3138.

[^5]: (10) Brown, I. D.; Dunitz, J. D. Acta Crystallogr. 1961, 14, 480

[^6]: (11) O’Connor, J. E.; Janusonis, G. A.; Corey, E. R. Chem. Commun. 1968, 445.
 (12) Lockhart, T. P.; Haitko, D. A. Polyhedron 1985, 4, 1745.
 (13) Drew, M. G. B.; Edwards, D. A.; Richards, R. J. Chem. Soc., Dalton Trans. 1977, 299.
 (14) Drew, M. G. B.; Edwards, D. A.; Richards, R. J. Chem. Soc., Chem. Commun. 1973, 124.

